Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.
نویسندگان
چکیده
Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off.
منابع مشابه
Fiber type homogeneity of the flight musculature in small birds.
Studies of medium- and large-bodied avian species have suggested that variation in flight muscle composition is related to differences in flight behavior. For example, slow-twitch or tonic fibers are generally found only in the flight muscles of non-volant or soaring/gliding birds. However, we know comparatively little about fiber composition of the muscles of the smallest birds. Here we descri...
متن کاملModulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance.
The pectoralis muscles are the main source of mechanical power for avian flight. The power output of these muscles must be modulated to meet the changing power requirements of flight across a range of speeds. This can be achieved at the muscle level by manipulation of strain trajectory and recruitment patterns, and/or by intermittent flight strategies. We have measured the in vitro power output...
متن کاملMyosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila
The Drosophila 36B muscle myosin heavy chain (MHC) gene has five sets of alternatively spliced exons that encode functionally important domains of the MHC protein and provide a combinatorial potential for expression of as many as 480 MHC isoforms. In this study, in situ hybridization analysis has been used to examine the complexity and muscle specificity of MHC isoform expression in the fibrill...
متن کاملDifferential muscular myosin heavy chain expression of the pectoral and pelvic girdles during early growth in the king penguin (Aptenodytes patagonicus) chick.
Continuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore...
متن کاملThe content of myosin heavy chains in hindlimb muscles of female and male rats.
The aim of the study was to test whether the considerable differences in the hindlimb muscles mass, the number and diameter of muscles fibers were connected with differences in the myosin heavy chain isoform content (expressed as the percentage of the given isoform in respect to total myosin heavy chains). Therefore, the content of myosin heavy chain (MHC) isoforms was studied in four hindlimb ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 306 11 شماره
صفحات -
تاریخ انتشار 2014